Manual paso a paso: Proyecto Backend Inmobiliaria con FastAPI + MongoDB
Este manual detalla cada paso realizado desde el inicio del proyecto hasta la implementación de autenticación y protección de rutas, antes de usar Git para control de versiones.

1. Crear entorno y estructura inicial
1.1 Crear carpeta del proyecto
cd Documents
mkdir inmobiliaria_backend
cd inmobiliaria_backend
1.2 Crear entorno virtual
python -m venv env
.\env\Scripts\activate # En Windows
1.3 Instalar dependencias necesarias
pip install fastapi uvicorn pymongo motor python-jose[cryptography] passlib[bcrypt] pydantic[email]

2. Crear estructura de carpetas y archivos
mkdir models routes utils
Crear archivo principal:
type nul > main.py
Crear archivo para conexión con MongoDB:
type nul > database.py

3. Conexión con MongoDB (database.py)
from motor.motor_asyncio import AsyncIOMotorClient

client = AsyncIOMotorClient("mongodb://localhost:27017")
db = client["mazatlan"]

4. Modelos de usuario (models/user.py)
import re
from typing import Literal
from pydantic import BaseModel, EmailStr, validator

class UserCreate(BaseModel):
 email: EmailStr
 password: str
 role: Literal["admin", "capturista"]

 @validator("password")
 def strong_password(cls, v):
 if len(v) < 8:
 raise ValueError("Password must be at least 8 characters long")
 if not re.search(r"[a-z]", v):
 raise ValueError("Password must contain at least one lowercase letter")
 if not re.search(r"[A-Z]", v):
 raise ValueError("Password must contain at least one uppercase letter")
 if not re.search(r"[0-9]", v):
 raise ValueError("Password must contain at least one number")
 if not re.search(r"[!@#$%^&*(),.?\":{}|<>]", v):
 raise ValueError("Password must contain at least one special character")
 return v

class UserOut(BaseModel):
 email: EmailStr
 role: Literal["admin", "capturista"]

class UserLogin(BaseModel):
 email: EmailStr
 password: str

class TokenData(BaseModel):
 email: str
 role: str

5. Funciones de autenticación (utils/auth.py)
from passlib.context import CryptContext
from jose import jwt, JWTError
from datetime import datetime, timedelta
from fastapi import Depends, HTTPException, status
from fastapi.security import OAuth2PasswordBearer
from models.user import TokenData
import os

SECRET_KEY = "supersecreto"
ALGORITHM = "HS256"

pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto")

oauth2_scheme = OAuth2PasswordBearer(tokenUrl="/login")

def hash_password(password: str) -> str:
 return pwd_context.hash(password)

def verify_password(plain: str, hashed: str) -> bool:
 return pwd_context.verify(plain, hashed)

def create_access_token(data: dict, expires_delta: timedelta = None):
 to_encode = data.copy()
 if expires_delta:
 expire = datetime.utcnow() + expires_delta
 else:
 expire = datetime.utcnow() + timedelta(minutes=15)
 to_encode.update({"exp": expire})
 return jwt.encode(to_encode, SECRET_KEY, algorithm=ALGORITHM)

def get_current_user(token: str = Depends(oauth2_scheme)) -> TokenData:
 try:
 payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM])
 email: str = payload.get("email")
 role: str = payload.get("role")
 if email is None or role is None:
 raise HTTPException(status_code=401, detail="Invalid token")
 return TokenData(email=email, role=role)
 except JWTError:
 raise HTTPException(status_code=401, detail="Invalid token")

6. Rutas de autenticación (routes/auth.py)
from fastapi import APIRouter, HTTPException, Depends, status
from models.user import UserCreate, UserLogin, UserOut, TokenData
from utils.auth import hash_password, verify_password, create_access_token, get_current_user
from database import db
from datetime import timedelta

router = APIRouter()

@router.post("/register", response_model=UserOut)
async def register(user: UserCreate, current_user: TokenData = Depends(get_current_user)):
 if current_user.role != "admin":
 raise HTTPException(status_code=403, detail="Only admin can register users.")

 existing = await db.users.find_one({"email": user.email})
 if existing:
 raise HTTPException(status_code=400, detail="User already exists.")

 hashed_pw = hash_password(user.password)

 new_user = {
 "email": user.email,
 "password": hashed_pw,
 "role": user.role
 }

 await db.users.insert_one(new_user)
 return {"email": user.email, "role": user.role}

@router.post("/login")
async def login(credentials: UserLogin):
 user = await db.users.find_one({"email": credentials.email})
 if not user or not verify_password(credentials.password, user["password"]):
 raise HTTPException(status_code=401, detail="Invalid credentials.")

 token = create_access_token(
 data={"email": user["email"], "role": user["role"]},
 expires_delta=timedelta(minutes=60)
)

 return {"access_token": token, "token_type": "bearer"}

@router.get("/me", response_model=TokenData)
async def read_users_me(current_user: TokenData = Depends(get_current_user)):
 return current_user

7. Archivo principal FastAPI (main.py)
from fastapi import FastAPI
from routes import auth

app = FastAPI(title="API Inmobiliaria Mazatlán", version="1.0.0")

app.include_router(auth.router, tags=["Auth"])

8. Correr el servidor
uvicorn main:app --reload
Luego, abrir:
http://127.0.0.1:8000/docs
Desde ahí se puede:
· Registrar usuarios (/register)
· Iniciar sesión (/login)
· Probar tokens en "Authorize"
· Ver usuario actual (/me)

✅ 1. Trazabilidad por documento
Cada documento en MongoDB (por ejemplo, desarrollo, modelo, unidad) incluirá automáticamente estos campos:
· created_by: correo del usuario que creó el documento.
· created_at: timestamp (fecha/hora) de creación.
· updated_by: correo del último usuario que lo modificó.
· updated_at: timestamp de la última modificación.
Esto se maneja desde las rutas del backend cuando alguien crea o edita un recurso.

✅ 2. Auditoría global (logs)
Cada acción importante será registrada en una colección logs, por ejemplo:
{
 "timestamp": "2025-06-05T14:35:00Z",
 "user_email": "capturista@ejemplo.com",
 "action": "create",
 "resource": "development",
 "resource_id": "dev_001",
 "details": {
 "fields": ["development_name", "latitude", "longitude"],
 "data": {...}
 }
}
Esto permite:
· Ver qué hizo quién y cuándo.
· Tener historial incluso si los documentos se borran o sobreescriben.

🛠️ ¿Cómo lo haremos?
1. En cada ruta (POST, PUT, DELETE), extraeremos el current_user desde el token.
2. Insertaremos automáticamente los campos created_by, updated_by, etc.
3. Guardaremos cada acción relevante en la colección logs.

Explicación de que consiste cada carpeta y cada archivo:
📁 Estructura del Proyecto
inmobiliaria_backend/
│
├── main.py
├── .env
├── .gitignore
│
├── database/
│ └── db.py
│
├── models/
│ ├── user.py
│ └── development.py
│
├── routes/
│ ├── auth.py
│ └── developments.py
│
├── utils/
│ ├── auth.py
│ ├── dependencies.py
│ └── logger.py

📄 main.py
✅ Propósito:
Punto de entrada de tu aplicación FastAPI.
🔧 Qué hace:
· Crea la instancia app = FastAPI(...)
· Incluye las rutas de autenticación y desarrollos (auth.py y developments.py)
· Opcionalmente se puede configurar metadata como título, versión, descripción, etc.

📁 database/
📄 db.py
✅ Propósito:
Conexión central a MongoDB.
🔧 Qué hace:
· Importa motor.motor_asyncio
· Crea una instancia de cliente MongoDB
· Expone el objeto db con acceso a colecciones como users, developments, logs, etc.

📁 models/
📄 user.py
✅ Propósito:
Define los modelos de usuario usados en autenticación y validación.
🔧 Contiene:
· UserCreate: para crear nuevos usuarios
· UserLogin: para login
· UserOut: para respuesta sin contraseña
· TokenData: estructura usada para datos del token JWT
Incluye validaciones como contraseña fuerte y formato de email.

📄 development.py
✅ Propósito:
Define el modelo para registrar desarrollos inmobiliarios.
🔧 Contiene:
· DevelopmentCreate: contiene todos los campos requeridos para registrar un nuevo desarrollo, incluyendo ubicación, ID, amenidades, etc.

📁 routes/
📄 auth.py
✅ Propósito:
Maneja el registro, login y lectura del usuario autenticado.
🔧 Contiene:
· POST /register: solo admin puede crear usuarios
· POST /login: verifica credenciales y devuelve token
· GET /me: verifica y devuelve datos del token JWT
Usa validaciones, hashing y generación de token desde utils.auth.

📄 developments.py
✅ Propósito:
Rutas para registrar desarrollos inmobiliarios.
🔧 Contiene:
· POST /developments: solo admin puede crear desarrollos.
· Usa validación contra duplicados.
· Registra acción en logs.
Esta parte se conecta a la bitácora y requiere autenticación.

📁 utils/
📄 auth.py
✅ Propósito:
Funciones auxiliares para hashing de contraseñas y generación/verificación de tokens JWT.
🔧 Contiene:
· hash_password, verify_password
· create_access_token, decode_access_token
· Define SECRET_KEY, ALGORITHM
Es usado en routes/auth.py y dependencies.py.

📄 dependencies.py
✅ Propósito:
Extrae el usuario desde el token para validar autenticación en las rutas protegidas.
🔧 Contiene:
· get_current_user: usa FastAPI Depends para recuperar el usuario autenticado.
Es usado por todas las rutas que requieren permisos como admin o capturista.

📄 logger.py
✅ Propósito:
Guardar cada acción crítica en una colección logs.
🔧 Contiene:
· log_action(...): guarda acción, usuario, documento modificado, antes y después de los cambios, y un operation_id para seguimiento.

✅ ¿Qué logramos?
Has armado una arquitectura modular, segura y trazable, con:
· Control de roles (admin/capturista)
· Validaciones de datos
· Autenticación JWT
· Registro en bitácora (logs)
· Separación por responsabilidad

¿Quieres que te genere esta explicación en un archivo README.md o manual.txt para que lo guardes en tu proyecto?

✅ AHORA, ¿QUÉ SIGUE EN TU PROYECTO?
Aquí la lista de siguientes pasos sugeridos con prioridad:

🔒 1. Validar acciones por rol en cada endpoint (ya empezamos)
· POST /register ✅
· POST /developments ✅
· PUT /developments/{id} ⏭️
· DELETE /developments/{id} ⏭️

🧱 2. Crear endpoints para los demás recursos:
· Modelos (como hiciste con developments)
· Unidades (por cada modelo)
· Catálogo de desarrolladores (inicialmente lo cargaste desde Excel, ahora hacerlo vía API opcional)
· Logs: endpoint de consulta para ver bitácora (solo admins)

🧪 3. Validaciones adicionales
· Validar campos numéricos (ej. unit_count > 0)
· Validar fechas (ej. que la fecha de inicio no sea en el futuro)
· Validar geolocalización (latitude, longitude) en rango correcto

💾 4. Guardar metadatos por documento
· Agregar campos en cada insert:
· created_by, created_at
· updated_by, updated_at
· Se puede hacer directamente en cada función o con un helper.

🔐 5. Proteger rutas completas por rol
Ejemplo: @router.get("/logs") solo accesible por admin, usando Depends.

📊 6. Panel de administración (Frontend)
· Usar React, Vue o cualquier framework para consumir tu API.
· El objetivo: capturistas llenan la base visualmente, no por Swagger.

🔄 7. Versionamiento y respaldo
· Aprender a usar ramas (branch: desarrollo, producción)
· Hacer commits por cambio lógico
· Usar .env local para separar config de producción

¿Te gustaría que ahora hagamos el endpoint para actualizar desarrollos (PUT /developments/{id}) y registre before y after en la bitácora? ¿O quieres que primero empecemos con los modelos y unidades?

