
    >h                     "    S r SSKJrJr  SS jrg)a  Parallel utility function using joblib

copied from https://github.com/mne-tools/mne-python

Author: Alexandre Gramfort <gramfort@nmr.mgh.harvard.edu>
License: Simplified BSD

changes for statsmodels (Josef Perktold)
- try import from joblib directly, (does not import all of sklearn)

    )ModuleUnavailableWarningmodule_unavailable_docc                      SSK JnJn  U" XS9nU" U 5      nUS:X  a   SSKnUR                  5       nO XVU4$ ! [         a    SSKJnJn   NCf = f! [        [        4 a3    SSKnUR                  [        R                  " S5      [        5        Sn N^f = f! [         a;    SSKnUR                  [        R                  " S5      [        5        SnU n[        n Nf = f)	a  Return parallel instance with delayed function

Util function to use joblib only if available

Parameters
----------
func : callable
    A function
n_jobs : int
    Number of jobs to run in parallel
verbose : int
    Verbosity level

Returns
-------
parallel : instance of joblib.Parallel or list
    The parallel object
my_func : callable
    func if not parallel or delayed(func)
n_jobs : int
    Number of jobs >= 0

Examples
--------
>>> from math import sqrt
>>> from statsmodels.tools.parallel import parallel_func
>>> parallel, p_func, n_jobs = parallel_func(sqrt, n_jobs=-1, verbose=0)
>>> print(n_jobs)
>>> parallel(p_func(i**2) for i in range(10))
r   )Paralleldelayed)verboseNmultiprocessing   joblib)r   r   r   ImportErrorsklearn.externals.joblibr
   	cpu_countNotImplementedErrorwarningswarnr   formatr   list)	funcn_jobsr   r   r   parallelmy_funcr
   r   s	            mC:\Users\julio\OneDrive\Documentos\Trabajo\Ideas Frescas\venv\Lib\site-packages\statsmodels/tools/parallel.pyparallel_funcr      s    >	C0 F4$-R<&(224 " f$$/  	CBB	C  !45 4;;<MN68	  ,33H=.	0sK   : B A AB AB A BB BB ACCN)   )__doc__statsmodels.tools.sm_exceptionsr   r   r        r   <module>r       s   
E9%r   