
    \!hr                         S SK r S SKr\ R                  R	                  \5      u  rr\ R                  R                  \SS5      r	S r
g)    Ndatazwine.csvc                      [         R                  " [        SS9n U SS2SS24   U SS2S4   p!UR                  [        5      nX4$ )a  Wine dataset.

Source : https://archive.ics.uci.edu/ml/datasets/Wine
Number of samples : 178
Class labels : {0, 1, 2}, distribution: [59, 71, 48]

Dataset Attributes:

    - 1) Alcohol
    - 2) Malic acid
    - 3) Ash
    - 4) Alcalinity of ash
    - 5) Magnesium
    - 6) Total phenols
    - 7) Flavanoids
    - 8) Nonflavanoid phenols
    - 9) Proanthocyanins
    - 10) Color intensity
    - 11) Hue
    - 12) OD280/OD315 of diluted wines
    - 13) Proline

Returns
--------
X, y : [n_samples, n_features], [n_class_labels]
    X is the feature matrix with 178 wine samples as rows
    and 13 feature columns.
    y is a 1-dimensional array of the 3 class labels 0, 1, 2

Examples
-----------
For usage examples, please see
https://rasbt.github.io/mlxtend/user_guide/data/wine_data

,)	delimiterN)nploadtxt	DATA_PATHastypeint)tmpXys      dC:\Users\julio\OneDrive\Documentos\Trabajo\Ideas Frescas\venv\Lib\site-packages\mlxtend/data/wine.py	wine_datar      sD    H **Y#
.Cq#2#v;ArE
q	A4K    )osnumpyr   pathsplit__file__this_dirthis_filenamejoinr
   r    r   r   <module>r      s?    
 ''--1 -GGLL6:6	'r   