
    ChU                        S SK rS SKrS SKJr  SSKJr  SSKJrJ	r	  \R                  R                   V s1 s H  o R                  iM     sn S1-  r\R                  (       a  \R                  S/5         " S S5      rgs  sn f )	    N)BaseGeometry   )_compat)array	geoseriesdwithinc                       \ rS rSrSrS r\S 5       r    SS jr\	S 5       r
    SS jrS	 r\S
 5       r\S 5       rS rSrg)SpatialIndex   zA simple wrapper around Shapely's STRTree.

Parameters
----------
geometry : np.array of Shapely geometries
    Geometries from which to build the spatial index.
c                     UR                  5       nS U[        R                  " U5      '   [        R                  " U5      U l        UR                  5       U l        g N)copyshapelyis_emptySTRtree_tree
geometries)selfgeometry	non_emptys      cC:\Users\julio\OneDrive\Documentos\Trabajo\Ideas Frescas\venv\Lib\site-packages\geopandas/sindex.py__init__SpatialIndex.__init__   sA    
 MMO	15	'""9-.__Y/
"--/    c                     [         $ )a  Returns valid predicates for the spatial index.

Returns
-------
set
    Set of valid predicates for this spatial index.

Examples
--------
>>> from shapely.geometry import Point
>>> s = geopandas.GeoSeries([Point(0, 0), Point(1, 1)])
>>> s.sindex.valid_query_predicates  # doctest: +SKIP
{None, "contains", "contains_properly", "covered_by", "covers", "crosses", "dwithin", "intersects", "overlaps", "touches", "within"}
)
PREDICATESr   s    r   valid_query_predicates#SpatialIndex.valid_query_predicates$   s
    " r   Nc                    X R                   ;  a,  US:X  a  [        S5      e[        SU SU R                    35      e0 nUS:X  a  Uc  [        S5      eXFS'   OUb  [        S5      eU R                  U5      nU R                  R                  " U4S	U0UD6nUS
:X  ae  U(       a^  UR
                  S:X  a  [        R                  " U5      nO7Uu  p[        R                  " X45      n
[        R                  " X   X   45      nUS:X  Ga  [        R                  " S5      nUR
                  S:X  ay  UR                  R                  [        R                  " [        U5      [        R                   S9UR#                  SS5      4[        U R$                  5      4[        R                   S9$ UR                  R                  [        R                  " [        US   5      [        R                   S9USSS2   4[        U R$                  5      [        U5      4[        R                   S9$ US:X  a  UR
                  S:X  a2  [        R&                  " [        U R$                  5      [(        S9nSX'   U$ [        R&                  " [        U R$                  5      [        U5      4[(        S9nUSSS2   u  pSXU4'   U$ US
:X  a  U$ [        SU S35      e)a  
Return all combinations of each input geometry
and tree geometries where the bounding box of each input geometry
intersects the bounding box of a tree geometry.

The result can be returned as an array of 'indices' or a boolean 'sparse' or
'dense' array. This can be controlled using the ``output_format`` keyword.
Options are as follows.

``'indices'``
    If the input geometry is a scalar, this returns an array of shape (n, ) with
    the indices of the matching tree geometries.  If the input geometry is an
    array_like, this returns an array with shape (2,n) where the subarrays
    correspond to the indices of the input geometries and indices of the
    tree geometries associated with each.  To generate an array of pairs of
    input geometry index and tree geometry index, simply transpose the
    result.
``'sparse'``
    If the input geometry is a scalar, this returns a boolean scipy.sparse COO
    array of shape (len(tree), ) with boolean values marking whether the
    bounding box of a geometry in the tree intersects a bounding box of a given
    scalar. If the input geometry is an array_like, this returns a boolean
    scipy.sparse COO array with shape (len(tree), n) with boolean values marking
    whether the bounding box of a geometry in the tree intersects a bounding box
    of a given scalar.
``'dense'``
    If the input geometry is a scalar, this returns a boolean numpy
    array of shape (len(tree), ) with boolean values marking whether the
    bounding box of a geometry in the tree intersects a bounding box of a given
    scalar. If the input geometry is an array_like, this returns a boolean
    numpy array with shape (len(tree), n) with boolean values marking
    whether the bounding box of a geometry in the tree intersects a bounding box
    of a given scalar.

If a predicate is provided, the tree geometries are first queried based
on the bounding box of the input geometry and then are further filtered
to those that meet the predicate when comparing the input geometry to
the tree geometry: ``predicate(geometry, tree_geometry)``.

The 'dwithin' predicate requires GEOS >= 3.10.

Bounding boxes are limited to two dimensions and are axis-aligned
(equivalent to the ``bounds`` property of a geometry); any Z values
present in input geometries are ignored when querying the tree.

Any input geometry that is None or empty will never match geometries in
the tree.

See the User Guide page :doc:`../../user_guide/spatial_indexing` for more.

Parameters
----------
geometry : shapely.Geometry or array-like of geometries (numpy.ndarray, GeoSeries, GeometryArray)
    A single shapely geometry or array of geometries to query against
    the spatial index. For array-like, accepts both GeoPandas geometry
    iterables (GeoSeries, GeometryArray) or a numpy array of Shapely
    geometries.
predicate : {None, "contains", "contains_properly", "covered_by", "covers", "crosses", "intersects", "overlaps", "touches", "within", "dwithin"}, optional
    If predicate is provided, the input geometries are tested
    using the predicate function against each item in the tree
    whose extent intersects the envelope of the input geometry:
    ``predicate(input_geometry, tree_geometry)``.
    If possible, prepared geometries are used to help speed up the
    predicate operation.
sort : bool, default False
    If True, the results will be sorted in ascending order. In case
    of 2D array, the result is sorted lexicographically using the
    geometries' indexes as the primary key and the sindex's indexes
    as the secondary key.
    If False, no additional sorting is applied (results are often
    sorted but there is no guarantee).
    Applicable only if output_format="indices".
distance : number or array_like, optional
    Distances around each input geometry within which to query the tree for
    the 'dwithin' predicate. If array_like, shape must be broadcastable to shape
    of geometry. Required if ``predicate='dwithin'``.
output_format : {"indices", "sparse", "dense"}, default "indices"
    Type of the output format representing the result of the query.

Returns
-------
`If geometry is a scalar:`

ndarray with shape (n,)
    Integer indices for matching geometries from the spatial index
    tree geometries.  If ``output_format="indices"``.

OR

scipy.sparse COO array with shape (len(tree), )
    Boolean array aligned with array of geometries in the tree.
    If ``output_format="sparse"``.

OR

ndarray with shape (len(tree), )
    Boolean array aligned with array of geometries in the tree.
    If ``output_format="dense"``.


`If geometry is an array_like:`

ndarray with shape (2, n)
    The first subarray contains input geometry integer indices.
    The second subarray contains tree geometry integer indices.
    If ``output_format="indices"``.

OR

scipy.sparse COO array with shape (len(tree), n)
    Boolean array aligned with array of geometries in the tree along axis 0 and
    with ``geometry`` along axis 1.
    If ``output_format="sparse"``.

OR

ndarray with shape (len(tree), n)
    Boolean array aligned with array of geometries in the tree along axis 0 and
    with ``geometry`` along axis 1.
    If ``output_format="dense"``.


Examples
--------
>>> from shapely.geometry import Point, box
>>> s = geopandas.GeoSeries(geopandas.points_from_xy(range(10), range(10)))
>>> s
0    POINT (0 0)
1    POINT (1 1)
2    POINT (2 2)
3    POINT (3 3)
4    POINT (4 4)
5    POINT (5 5)
6    POINT (6 6)
7    POINT (7 7)
8    POINT (8 8)
9    POINT (9 9)
dtype: geometry

Querying the tree with a scalar geometry:

>>> s.sindex.query(box(1, 1, 3, 3))
array([1, 2, 3])

>>> s.sindex.query(box(1, 1, 3, 3), predicate="contains")
array([2])

Querying the tree with an array of geometries:

>>> s2 = geopandas.GeoSeries([box(2, 2, 4, 4), box(5, 5, 6, 6)])
>>> s2
0    POLYGON ((4 2, 4 4, 2 4, 2 2, 4 2))
1    POLYGON ((6 5, 6 6, 5 6, 5 5, 6 5))
dtype: geometry

>>> s.sindex.query(s2)
array([[0, 0, 0, 1, 1],
       [2, 3, 4, 5, 6]])

>>> s.sindex.query(s2, predicate="contains")
array([[0],
       [3]])

>>> s.sindex.query(box(1, 1, 3, 3), predicate="dwithin", distance=0)
array([1, 2, 3])

>>> s.sindex.query(box(1, 1, 3, 3), predicate="dwithin", distance=2)
array([0, 1, 2, 3, 4])

Returning boolean arrays:

>>> s.sindex.query(box(1, 1, 3, 3), output_format="sparse")
<COOrdinate sparse array of dtype 'bool'
    with 3 stored elements and shape (10,)>

>>> s.sindex.query(box(1, 1, 3, 3), output_format="dense")
array([False,  True,  True,  True, False, False, False, False, False,
       False])

>>> s.sindex.query(s2, output_format="sparse")
<COOrdinate sparse array of dtype 'bool'
    with 5 stored elements and shape (10, 2)>

>>> s.sindex.query(s2, output_format="dense")
array([[False, False],
       [False, False],
       [ True, False],
       [ True, False],
       [ True, False],
       [False,  True],
       [False,  True],
       [False, False],
       [False, False],
       [False, False]])

Notes
-----
In the context of a spatial join, input geometries are the "left"
geometries that determine the order of the results, and tree geometries
are "right" geometries that are joined against the left geometries. This
effectively performs an inner join, where only those combinations of
geometries that can be joined based on overlapping bounding boxes or
optional predicate are returned.
r   z-predicate = 'dwithin' requires GEOS >= 3.10.0zGot predicate='z'; `predicate` must be one of Nz8'distance' parameter is required for 'dwithin' predicatedistancezN'distance' parameter is only supported in combination with 'dwithin' predicate	predicateindicesr   sparsescipy)dtype)shaper&   r   denseTzInvalid output_format: 'z+'. Use one of 'indices', 'sparse', 'dense'.)r   
ValueError_as_geometry_arrayr   queryndimnpsortlexsortvstackcompatimport_optional_dependencyr$   	coo_arrayoneslenbool_reshaper   zerosbool)r   r   r"   r/   r!   output_formatkwargsr#   geo_idxtree_idxsort_indexerr%   r)   treeothers                  r   r,   SpatialIndex.query7   s   l 777I% !PQQ!) -..2.I.I-JL  	! N  "*:!& 
 **84**""8KyKFKI%$||q '''* %,!!zz8*=>))W%:H<R$STH$55g>E||q ||--WWS\:GOOAr<RSt/1(( .  
 <<))WQZ974R4=I4??+S];hh *   G#||q T__!5TB!%
 L #doo"6H!FdS%ddm%)Ek"LI%N&}o 67 7
 	
r   c                    [        U [        R                  5      (       a   [        R                  " U 5      R
                  $ [        U [        R                  5      (       a  U R                  R
                  $ [        U [        R                  5      (       a  U R
                  $ [        U [        5      (       a  U $ U c  g[        R                  " U 5      $ )a"  Convert geometry into a numpy array of Shapely geometries.

Parameters
----------
geometry
    An array-like of Shapely geometries, a GeoPandas GeoSeries/GeometryArray,
    shapely.geometry or list of shapely geometries.

Returns
-------
np.ndarray
    A numpy array of Shapely geometries.
N)
isinstancer.   ndarrayr   from_shapely_datar   	GeoSeriesvaluesGeometryArrayr   asarray)r   s    r   r+   SpatialIndex._as_geometry_arrayW  s     h

++%%h/555)"5"566??(((%"5"566>>!,//O::h''r   c                     U R                  U5      n[        U[        5      (       d  Uc  U/nU R                  R	                  UUUUUS9nU(       a  Uu  pxOUnU(       a  UW4$ U$ )a
  
Return the nearest geometry in the tree for each input geometry in
``geometry``.

If multiple tree geometries have the same distance from an input geometry,
multiple results will be returned for that input geometry by default.
Specify ``return_all=False`` to only get a single nearest geometry
(non-deterministic which nearest is returned).

In the context of a spatial join, input geometries are the "left"
geometries that determine the order of the results, and tree geometries
are "right" geometries that are joined against the left geometries.
If ``max_distance`` is not set, this will effectively be a left join
because every geometry in ``geometry`` will have a nearest geometry in
the tree. However, if ``max_distance`` is used, this becomes an
inner join, since some geometries in ``geometry`` may not have a match
in the tree.

For performance reasons, it is highly recommended that you set
the ``max_distance`` parameter.

Parameters
----------
geometry : {shapely.geometry, GeoSeries, GeometryArray, numpy.array of Shapely geometries}
    A single shapely geometry, one of the GeoPandas geometry iterables
    (GeoSeries, GeometryArray), or a numpy array of Shapely geometries to query
    against the spatial index.
return_all : bool, default True
    If there are multiple equidistant or intersecting nearest
    geometries, return all those geometries instead of a single
    nearest geometry.
max_distance : float, optional
    Maximum distance within which to query for nearest items in tree.
    Must be greater than 0. By default None, indicating no distance limit.
return_distance : bool, optional
    If True, will return distances in addition to indexes. By default False
exclusive : bool, optional
    if True, the nearest geometries that are equal to the input geometry
    will not be returned. By default False.  Requires Shapely >= 2.0.

Returns
-------
Indices or tuple of (indices, distances)
    Indices is an ndarray of shape (2,n) and distances (if present) an
    ndarray of shape (n).
    The first subarray of indices contains input geometry indices.
    The second subarray of indices contains tree geometry indices.

Examples
--------
>>> from shapely.geometry import Point, box
>>> s = geopandas.GeoSeries(geopandas.points_from_xy(range(10), range(10)))
>>> s.head()
0    POINT (0 0)
1    POINT (1 1)
2    POINT (2 2)
3    POINT (3 3)
4    POINT (4 4)
dtype: geometry

>>> s.sindex.nearest(Point(1, 1))
array([[0],
       [1]])

>>> s.sindex.nearest([box(4.9, 4.9, 5.1, 5.1)])
array([[0],
       [5]])

>>> s2 = geopandas.GeoSeries(geopandas.points_from_xy([7.6, 10], [7.6, 10]))
>>> s2
0    POINT (7.6 7.6)
1    POINT (10 10)
dtype: geometry

>>> s.sindex.nearest(s2)
array([[0, 1],
       [8, 9]])
)max_distancereturn_distanceall_matches	exclusive)r+   rD   r   r   query_nearest)	r   r   
return_allrN   rO   rQ   resultr#   	distancess	            r   nearestSpatialIndex.nearests  s}    n **84h--1A zH))%+" * 
 !'GYGI%%Nr   c                 f    [        U5        [        U5      S:X  a.  U R                  R	                  [
        R                  " U6 5      nU$ [        U5      S:X  a.  U R                  R	                  [
        R                  " U6 5      nU$ [        SU S35      e! [         a    [        SU S35      ef = f)a  Compatibility wrapper for rtree.index.Index.intersection,
use ``query`` instead.

Parameters
----------
coordinates : sequence or array
    Sequence of the form (min_x, min_y, max_x, max_y)
    to query a rectangle or (x, y) to query a point.

Examples
--------
>>> from shapely.geometry import Point, box
>>> s = geopandas.GeoSeries(geopandas.points_from_xy(range(10), range(10)))
>>> s
0    POINT (0 0)
1    POINT (1 1)
2    POINT (2 2)
3    POINT (3 3)
4    POINT (4 4)
5    POINT (5 5)
6    POINT (6 6)
7    POINT (7 7)
8    POINT (8 8)
9    POINT (9 9)
dtype: geometry

>>> s.sindex.intersection(box(1, 1, 3, 3).bounds)
array([1, 2, 3])

Alternatively, you can use ``query``:

>>> s.sindex.query(box(1, 1, 3, 3))
array([1, 2, 3])

zInvalid coordinates, must be iterable in format (minx, miny, maxx, maxy) (for bounds) or (x, y) (for points). Got `coordinates` = .      )iter	TypeErrorr6   r   r,   r   boxpoints)r   coordinatesindexess      r   intersectionSpatialIndex.intersection  s    N
	 {q jj&&w{{K'@AG  "jj&&w~~{'CDG  ''2m16 !  	 ''2m16 		s   B B0c                 ,    [        U R                  5      $ )a  Size of the spatial index.

Number of leaves (input geometries) in the index.

Examples
--------
>>> from shapely.geometry import Point
>>> s = geopandas.GeoSeries(geopandas.points_from_xy(range(10), range(10)))
>>> s
0    POINT (0 0)
1    POINT (1 1)
2    POINT (2 2)
3    POINT (3 3)
4    POINT (4 4)
5    POINT (5 5)
6    POINT (6 6)
7    POINT (7 7)
8    POINT (8 8)
9    POINT (9 9)
dtype: geometry

>>> s.sindex.size
10
r6   r   r   s    r   sizeSpatialIndex.size   s    4 4::r   c                 2    [        U R                  5      S:H  $ )a  Check if the spatial index is empty.

Examples
--------
>>> from shapely.geometry import Point
>>> s = geopandas.GeoSeries(geopandas.points_from_xy(range(10), range(10)))
>>> s
0    POINT (0 0)
1    POINT (1 1)
2    POINT (2 2)
3    POINT (3 3)
4    POINT (4 4)
5    POINT (5 5)
6    POINT (6 6)
7    POINT (7 7)
8    POINT (8 8)
9    POINT (9 9)
dtype: geometry

>>> s.sindex.is_empty
False

>>> s2 = geopandas.GeoSeries()
>>> s2.sindex.is_empty
True
r   re   r   s    r   r   SpatialIndex.is_empty<  s    8 4::!##r   c                 ,    [        U R                  5      $ r   re   r   s    r   __len__SpatialIndex.__len__Z  s    4::r   )r   r   )NFNr#   )TNFF)__name__
__module____qualname____firstlineno____doc__r   propertyr   r,   staticmethodr+   rV   rb   rf   r   rk   __static_attributes__ r   r   r
   r
      s    
*  * ^
@	 ( (< jX?B  6 $ $:r   r
   )numpyr.   r   shapely.geometry.baser    r   r2   r   r   strtreeBinaryPredicatenamer   GEOS_GE_310updater
   )ps   0r   <module>r      sg      .  %oo==>=ff=>$G
	yk"L	 L	 ?s   A?