Guía Profesional de Flujo de Trabajo con Git: Manejo de Ramas, Commits y Deploys en Proyectos con Firebase + Next.js

1. CREAR UNA NUEVA RAMA PARA UNA FEATURE O CORRECCIÓN
Desde la rama dev o main, crea y cambia a una nueva rama:
git checkout -b fix/login-redirect
2. CONSULTAR EL ESTADO DEL PROYECTO
git status # Archivos modificados o no seguidos
git branch -a # Ver ramas locales y remotas
git log --oneline --graph --decorate --all # Vista de historial
3. AGREGAR Y COMMITAR CAMBIOS
git add . # Agrega todos los archivos
o git add src/middleware.ts # Agrega archivos específicos

git commit -m "fix(auth): redireccionar al login si no hay sesión activa"
4. TRAER CAMBIOS NUEVOS DEL REMOTO
git fetch origin # Actualiza referencias remotas
git pull origin dev # Trae cambios remotos a tu rama local si estás en dev
5. SUBIR TU RAMA AL REMOTO
git push origin fix/login-redirect

6. MERGE ENTRE RAMAS
Cambia a la rama donde quieres integrar los cambios:
git checkout dev

Fusiona tu rama:
git merge fix/login-redirect

Si hay conflictos, resuélvelos, luego:
git add .
git commit -m "merge: fix login redirect integrado a dev"
7. DEPLOY A STAGING CON FIREBASE (RAMAS VALIDABLES)
Asegúrate de estar en dev:
git checkout dev

Verifica el build localmente:
npm run build

Despliega a staging:
firebase hosting:channel:deploy staging

8. REVERTIR A UN COMMIT ANTERIOR DE FORMA PERMANENTE
Ver commits rápidamente:
git log --oneline

Regresar a uno específico:
git reset --hard <hash_commit>

Forzar sincronización con el remoto (ej: origin/dev):
git push origin dev --force
⚠¯evitar este comando en main si otros ya tienen esa rama sincronizada.

9. BORRAR UNA RAMA QUE YA NO SIRVE
Local:
git branch -d fix/login-redirect
Si fue forzada:
git branch -D fix/login-redirect

Remota:
git push origin --delete fix/login-redirect

Para descartar todos tus cambios locales y volver exactamente al estado remoto de la rama origin/dev (tal como estaba en el servidor cuando funcionaba), sigue esta guía paso a paso cuidadosamente.

🔁 1. Asegúrate de estar en la rama dev
bash
CopiarEditar
git checkout dev

🔄 2. Recupera lo último del servidor remoto
bash
CopiarEditar
git fetch origin
Esto asegura que origin/dev está actualizado con lo que hay en GitHub.

⚠️ 3. Elimina TODOS los cambios locales y resetea la rama al último commit remoto que sí funcionaba
bash
CopiarEditar
git reset --hard origin/dev
Esto elimina cualquier commit, cambio o archivo sin guardar que hayas hecho localmente en dev y deja tu código exactamente como está en origin/dev.

✅ 4. Verifica el estado
bash
CopiarEditar
git status
Debe decir:
Your branch is up to date with 'origin/dev'.
nothing to commit, working tree clean

🧪 5. (Opcional) Corre localmente para verificar
bash
CopiarEditar
npm run dev
O si estás en entorno Firebase:
bash
CopiarEditar
firebase hosting:channel:deploy staging

📝 Nota importante
Este comando elimina por completo cualquier trabajo local no commiteado, así que asegúrate de guardar o stashear tus cambios si quieres recuperarlos después.

10. BUENAS PRÁCTICAS DE COMMIT Y DOCUMENTACIÓN
· Usa prefijos semánticos: fix, feat, refactor, chore, docs, test.
· Prefijos por área: (auth), (firebase), (dashboard), (sales).
· Mensaje corto pero descriptivo:
· feat(developer-form): validación de campos y redireccionamiento
· fix(log): addLog importado correctamente en server actions

11. PUBLICAR EN PRODUCCIÓN
Asegura que dev y main estén sincronizados:
git checkout main
git merge dev
git push origin main

Luego:
firebase deploy --only hosting

12. FLUJO RECOMENDADO PARA CADA FEATURE O FIX
1. git checkout -b nombre-rama
2. Hacer cambios
3. git commit -m "tipo(modulo): mensaje"
4. git push origin nombre-rama
5. Validar en staging
6. Merge a dev
7. Si aplica, merge a main y firebase deploy

✅ Con este flujo puedes manejar staging, producción, pruebas, errores críticos y features nuevas sin perder el control del proyecto ni romper la app en producción.

