Documentacion de la app 1er día en producción 

El objetivo de este módulo es permitir a los usuarios (principalmente Admin y Capturista) crear, visualizar, actualizar y eliminar los registros de las empresas desarrolladoras de proyectos inmobiliarios.
Todo comienza aquí. Cuando un usuario navega a /developers, se carga la página principal de gestión.
· Archivo Principal: src/app/developers/page.tsx
· Función: Este archivo es el contenedor de la página. Su única responsabilidad es renderizar el componente principal del dashboard, DeveloperManagementDashboard.
· Componente Central: src/components/developer-management-dashboard.tsx
· Función: Este es el verdadero corazón de la interfaz. Orquesta toda la experiencia del usuario en esta página.
· Estado Interno (useState): Mantiene una lista de todos los desarrolladores (developers), los filtros seleccionados (stateFilter, cityFilter), el orden de la tabla (sortConfig) y controla qué diálogos (modales) están abiertos (isDialogOpen, isBulkUploadOpen).
· Carga Inicial de Datos (useEffect): Al cargar el componente por primera vez, llama a getDevelopers() para obtener la lista inicial de todos los desarrolladores desde Firestore.
· Renderizado de la Interfaz:
· Título y Botones de Acción: Muestra el encabezado "Gestión de desarrolladores" y dos botones principales:
· "Cargar excel" (Upload): Al hacer clic, abre el diálogo de carga masiva (BulkUploadDialog).
· "Añadir desarrollador" (PlusCircle): Al hacer clic, abre el formulario de edición en modo "crear" (DeveloperEditDialog).
· Filtros: Renderiza los menús desplegables para filtrar la tabla por Estado y Ciudad. Al cambiar un filtro, la tabla se actualiza instantáneamente (sin recargar la página) gracias al estado de React (filteredAndSortedDevelopers).
· Tabla de Desarrolladores:
· Muestra la lista de desarrolladores filtrada y ordenada.
· Encabezados (TableHead): Son botones que, al hacer clic, cambian el estado sortConfig para ordenar la tabla por esa columna (nombre, estado, etc.).
· Filas (TableRow): Cada fila representa un desarrollador.
· Celda de Nombre: El nombre del desarrollador es un enlace (<Link>) que lleva a su página de perfil detallado (ej. /developers/ID_DEL_DESARROLLADOR).
· Menú de Acciones (MoreHorizontal): Cada fila tiene un botón con tres puntos que despliega un menú con dos opciones:
1. "Editar": Abre el diálogo DeveloperEditDialog con los datos del desarrollador de esa fila, listo para ser editado.
2. "Eliminar" (solo Admins): No borra directamente. Abre un diálogo de confirmación (ConfirmDialog) para prevenir eliminaciones accidentales.
· Componente del Formulario: src/components/developer-edit-dialog.tsx
· Función: Proporciona el formulario para crear o editar un desarrollador. Es un componente altamente reutilizable.
· Manejo del Formulario (react-hook-form y zod):
· Utiliza react-hook-form para un manejo eficiente del estado del formulario.
· Usa zod y DeveloperObjectSchema (de src/types/index.ts) para definir las reglas de validación (ej. "el nombre es requerido"). Si un usuario introduce datos incorrectos, zod muestra automáticamente los mensajes de error correspondientes debajo de cada campo.
· Lógica de Guardado (handleSave):
· Cuando el usuario hace clic en "Guardar", esta función se activa.
· Verifica si ya existe un desarrollador con el mismo nombre y ubicación para evitar duplicados.
· Llama a la Server Action apropiada: addDeveloperAction si es un nuevo desarrollador o updateDeveloperAction si se está editando uno existente.
· Muestra una notificación (toast) de éxito o error.
Esta es la parte "invisible" pero más importante. La comunicación entre el frontend (lo que el usuario ve) y la base de datos es manejada exclusivamente por Server Actions.
· Archivo de Acciones: src/app/actions.ts
· Función: Actúa como una barrera de seguridad y un punto de entrada único al backend desde los componentes de cliente.
· addDeveloperAction(data, user) y updateDeveloperAction(data, user):
1. Reciben los datos del formulario desde el diálogo de edición.
2. Llaman a las funciones correspondientes en el servicio: addDeveloper o updateDeveloper.
3. Auditoría: Después de que la base de datos se actualiza con éxito, crean un registro en la colección logs llamando a addLog. Este log guarda quién hizo el cambio, qué cambió y cuándo.
4. Devuelven el resultado (éxito o error) al componente que las llamó.
· deleteDeveloperAction(id, user):
1. Primero, verifica si el desarrollador está en uso en algún proyecto llamando a isDeveloperInUse. Si es así, devuelve un error para proteger la integridad de los datos.
2. Si no está en uso, llama a deleteDeveloper para eliminar el registro.
3. Registra la eliminación en el log de auditoría.
· Archivo de Servicio: src/services/developerService.ts
· Función: Contiene la lógica pura de interacción con la base de datos de Firestore. No sabe nada sobre la interfaz de usuario.
· getDevelopers(): Obtiene y devuelve todos los desarrolladores.
· addDeveloper(data): Construye el objeto final con campos de metadatos (como developer_id, created_at, created_by) y lo inserta en la colección developers.
· updateDeveloper(data): Actualiza el documento existente en Firestore.
· deleteDeveloper(id): Elimina el documento de Firestore.
· Archivo de la Página: src/app/developers/[id]/page.tsx
· Función: Es el contenedor de la página de perfil. Obtiene el id del desarrollador de la URL.
· Carga de Datos (useEffect): Llama a dos servicios:
1. getDeveloper(id) para obtener los detalles del desarrollador específico.
2. getDevelopments({ developerId: id, ... }) para obtener la lista de todos los proyectos asociados a ese desarrollador.
· Renderiza el componente DeveloperProfileView pasándole los datos obtenidos.
· Componente de Visualización: src/components/developer-profile-view.tsx
· Función: Muestra toda la información de un desarrollador de forma clara y organizada.
· Tarjeta de Información: Muestra los detalles clave como ubicación, contacto y fecha de registro.
· Tabla de Proyectos Asociados: Lista todos los desarrollos que esta empresa ha construido, con enlaces a cada uno de ellos. La tabla también es ordenable.
En resumen, el módulo de desarrolladores es un sistema completo y robusto que separa claramente las responsabilidades:
· Componentes React (/components): Se encargan de la presentación y la interacción del usuario.
· Server Actions (/actions.ts): Son el puente seguro y el único canal de comunicación con el backend.
· Servicios (/services): Contienen la lógica de negocio pura y la interacción directa con la base de datos.

Panel comercializadora

El objetivo de este módulo es gestionar la información de las empresas encargadas de la venta y comercialización de los proyectos inmobiliarios.
El flujo de usuario para este módulo comienza en la página principal /commercializers.
· Archivo Principal: src/app/commercializers/page.tsx
· Función: Al igual que su contraparte de desarrolladores, este archivo es un simple contenedor. Su única tarea es renderizar el componente de dashboard CommercializerManagementDashboard.
· Componente Central: src/components/commercializer-management-dashboard.tsx
· Función: Este es el componente que controla toda la interfaz y la lógica de la página.
· Estado (useState): Gestiona la lista de comercializadoras, los filtros de ubicación (estado y ciudad), el orden de la tabla y controla la visibilidad de los diálogos (modales) de edición y carga masiva.
· Carga de Datos (useEffect): Cuando el componente se monta, llama a la función getCommercializers para cargar la lista inicial de todas las comercializadoras desde la base de datos.
· Renderizado de la Interfaz:
· Encabezado y Acciones: Muestra el título principal y los botones de acción:
· "Cargar excel": Abre el diálogo de carga masiva CommercializerBulkUploadDialog (funcionalidad pendiente).
· "Añadir comercializadora": Abre el formulario de edición CommercializerEditDialog para crear un nuevo registro.
· Filtros de Ubicación: Dos menús desplegables que permiten al usuario filtrar la tabla por Estado y Ciudad. La tabla se actualiza al instante al cambiar la selección.
· Tabla de Comercializadoras: Es el elemento principal de la vista.
· Encabezados Ordenables (TableHead): Permiten al usuario ordenar la tabla alfabéticamente por nombre, estado o ciudad, en orden ascendente o descendente.
· Filas (TableRow): Cada fila representa una comercializadora.
· Celda de Nombre: El nombre de la empresa es un enlace (<Link>) que dirige al usuario a la página de perfil detallado (/commercializers/ID_DE_LA_COMERCIALIZADORA).
· Menú de Acciones (MoreHorizontal): Un menú desplegable en cada fila con dos opciones clave:
1. "Editar": Abre el diálogo CommercializerEditDialog precargado con los datos de la comercializadora de esa fila, lista para ser modificada.
2. "Eliminar" (visible solo para Admins): Inicia el proceso de eliminación segura, mostrando primero un diálogo de confirmación (ConfirmDialog) para evitar accidentes.
· Componente del Formulario: src/components/commercializer-edit-dialog.tsx
· Función: Presenta un formulario modal para crear o editar la información de una comercializadora.
· Validación y Estado del Formulario (react-hook-form y zod):
· Utiliza react-hook-form para un manejo eficiente del estado de los campos.
· Emplea zod junto con CommercializingCompanyObjectSchema (definido en src/types/index.ts) para validar los datos en tiempo real y mostrar mensajes de error claros si el usuario introduce información inválida.
· Lógica de Guardado (handleSave):
· Se activa al enviar el formulario.
· Realiza una comprobación para evitar la creación de comercializadoras duplicadas (mismo nombre en la misma ubicación).
· Invoca la Server Action correcta: addCommercializerAction para un nuevo registro o updateCommercializerAction para uno existente.
· Utiliza el sistema de notificaciones (toast) para dar feedback al usuario sobre el resultado de la operación.
El frontend se comunica con la base de datos a través de la capa de seguridad y lógica de las Server Actions.
· Archivo de Acciones: src/app/actions.ts
· Función: Centraliza toda la lógica de servidor que los componentes de cliente pueden invocar.
· addCommercializerAction(data, user) y updateCommercializerAction(data, user):
1. Reciben los datos del formulario.
2. Llaman a la función de servicio correspondiente (addCommercializer o updateCommercializer).
3. Paso de Auditoría: Si la operación en la base de datos es exitosa, se crea un registro de auditoría en la colección logs, detallando la acción, el usuario responsable y los datos modificados.
4. Devuelven el resultado al componente de frontend.
· deleteCommercializerAction(id, user):
1. Validación de Integridad: Antes de borrar, llama a isCommercializerInUse para verificar si la comercializadora está vinculada a algún desarrollo. Si lo está, devuelve un error para impedir la eliminación y mantener la consistencia de los datos.
2. Si la validación pasa, llama a deleteCommercializer para eliminar el documento.
3. Registra la eliminación en el log.
· Archivo de Servicio: src/services/commercializerService.ts
· Función: Es la capa que contiene la lógica pura de interacción con Firestore para este módulo.
· getCommercializers(): Lee y devuelve todos los documentos de la colección commercializers.
· addCommercializer(data): Prepara el objeto de datos, añade metadatos como el ID único, fechas y usuario creador, y lo guarda en la base de datos.
· updateCommercializer(data): Modifica un documento existente.
· deleteCommercializer(id): Elimina un documento específico.
· Archivo de la Página: src/app/commercializers/[id]/page.tsx
· Función: Carga el perfil de una comercializadora específica basado en el id de la URL.
· Carga de Datos (useEffect): Obtiene los datos del perfil de la comercializadora (getCommercializer) y la lista de todos los proyectos que comercializa (getDevelopments).
· Renderiza el componente CommercializerProfileView.
· Componente de Visualización: src/components/commercializer-profile-view.tsx
· Función: Presenta de forma clara y detallada toda la información de la comercializadora.
· Tarjeta de Información: Muestra los datos de contacto y ubicación.
· Tabla de Proyectos Asociados: Una lista de todos los desarrollos donde esta empresa participa como comercializadora, permitiendo al usuario navegar directamente a esos proyectos.
En conclusión, el módulo de Comercializadoras es un espejo funcional del de Desarrolladores, demostrando un diseño de software consistente y modular. La separación clara entre la interfaz (componentes), la lógica de servidor (acciones) y el acceso a datos (servicios) garantiza que el sistema sea robusto, seguro y fácil de escalar

Panel de desarrollos
Panel de desarrollo / proyecto
A diferencia de los módulos más sencillos, la creación de un desarrollo es un proceso guiado para asegurar la correcta captura de datos desde el inicio. 
Paso 1: El Diálogo Inicial (DevelopmentInitialDialog) 
Activación: El flujo comienza en la página /developments cuando el usuario hace clic en el botón "Añadir nuevo desarrollo". 
Componente: src/components/development-initial-dialog.tsx. 
Función: Este diálogo tiene un único y crucial propósito: obtener los tres datos discriminatorios que definirán el resto del formulario. 
Estado: El estado donde se ubica el proyecto. 
Municipio: La ciudad o municipio. 
Categoría: El tipo de desarrollo (Vertical, Horizontal o Lote). 
Inteligencia del Formulario: Los campos de Estado y Municipio son "comboboxes" inteligentes. Permiten al usuario tanto seleccionar de una lista existente (poblada desde la base de datos) como escribir un nuevo nombre, que será guardado si no existe. 
Callback onNext: Al hacer clic en "Siguiente", este diálogo no guarda nada en la base de datos. En su lugar, pasa los tres datos recolectados al componente padre (developments/page.tsx). 
Paso 2: El Formulario Específico (Vertical/Horizontal/LoteDevelopmentFormDialog) 
Lógica de Renderizado Condicional: El componente developments/page.tsx, al recibir los datos del diálogo inicial, utiliza la categoría para decidir cuál de los tres formularios especializados debe mostrar. Por ejemplo, si se eligió "Vertical", renderiza <VerticalDevelopmentFormDialog />. 
Componentes: 
src/components/vertical-development-form-dialog.tsx 
src/components/horizontal-development-form-dialog.tsx 
src/components/lote-development-form-dialog.tsx 
Función de los Formularios: 
Cada uno de estos diálogos contiene un formulario extenso y detallado, diseñado específicamente para capturar los datos relevantes para su categoría (ej. el formulario vertical pide "Pisos", mientras que el de lotes pide "Tipo de Lote"). 
Validación con Zod: Cada formulario está asociado a un esquema de validación (VerticalDevelopmentSchema, HorizontalDevelopmentSchema, LoteDevelopmentSchema en src/types/index.ts). Esto asegura que todos los campos requeridos estén completos y que los datos tengan el formato correcto (números, fechas, etc.) antes de poder guardar. 
Manejo de Campos Complejos: 
Desarrollador/Comercializadora: Son comboboxes que permiten buscar y seleccionar de la lista de entidades ya registradas. 
Amenidades/Servicios: Utilizan useFieldArray de react-hook-form para permitir al usuario añadir o quitar dinámicamente campos de texto para listar múltiples características. 
Fechas: Usan un componente de calendario (<Calendar />) para una selección de fechas intuitiva. 
Lógica de Guardado (handleSubmit): Al hacer clic en "Guardar desarrollo", se invoca la Server Action correspondiente (addVerticalDevelopmentAction, etc.). 
Archivo de Acciones: src/app/actions.ts 
add...DevelopmentAction(data, user): 
Recibe los datos del formulario específico. 
Llama a la función de servicio genérica addDevelopment. 
Crea un registro de auditoría detallado en la colección logs. 
update...DevelopmentAction(data, user): 
Obtiene el estado del desarrollo antes del cambio para poder registrar las diferencias. 
Llama a updateDevelopment para guardar los cambios. 
Calcula las diferencias exactas entre el estado "antes" y "después" usando getChanges() y las guarda en el log de auditoría. 
deleteDevelopmentAction(development, user) (Solo Admins): 
Esta es una eliminación en cascada. Es la acción más crítica y delicada. 
Utiliza una operación WriteBatch de Firestore, que garantiza que todas las eliminaciones ocurran de forma atómica (o todas o ninguna). 
Primero, llama a deleteUnitsByDevelopmentIdBatch para añadir al lote la eliminación de todas las unidades asociadas a ese desarrollo. 
Luego, añade al lote la eliminación del propio documento del desarrollo. 
Ejecuta (commit) el lote. 
Crea un solo log que registra la eliminación del desarrollo y todas sus unidades asociadas. 
Archivo de Servicio: src/services/developmentService.ts 
Función: Contiene la lógica pura para interactuar con la colección developments. 
addDevelopment(data) y updateDevelopment(data): Se encargan de la escritura en la base de datos, añadiendo metadatos como el id_desarrollo único, fechas y el id del usuario que realiza la acción. 
getDevelopments(filters): Es una función de búsqueda potente que construye una consulta a Firestore basada en los filtros proporcionados (estado, ciudad, tipo). Además, enriquece los datos obtenidos con los nombres del desarrollador y la comercializadora, y calcula los estatus de construcción y ventas en tiempo real. 
getDevelopmentById(id): Obtiene un único desarrollo por su ID. 
Componente Principal: src/app/developments/page.tsx 
Función: Orquesta la vista principal del listado de desarrollos. 
Filtros de Búsqueda: A diferencia de otros módulos, aquí la búsqueda es explícita. El usuario debe seleccionar al menos un tipo de desarrollo y luego hacer clic en "Buscar". Esto es para evitar cargar una cantidad potencialmente masiva de datos por defecto. 
Lógica de Búsqueda (handleSearch): Al hacer clic en "Buscar", llama a la función getDevelopments con los filtros seleccionados y actualiza el estado developments, lo que repinta la tabla. 
Tabla de Resultados: Muestra los desarrollos encontrados. Cada fila tiene un enlace al perfil del desarrollo y un menú de acciones para "Editar" o "Eliminar". 
Esta es la vista más rica y compleja de toda la aplicación. 
Archivo de la Página: src/app/developments/[id]/page.tsx 
Función: Obtiene el ID del desarrollo de la URL y orquesta la carga de todos los datos necesarios para mostrar el perfil completo. 
Carga de Datos Agregada (fetchAllData): Utiliza Promise.all para cargar de forma paralela y eficiente toda la información relacionada con este desarrollo: 
Los detalles del desarrollo en sí (getDevelopmentById). 
La lista completa de desarrolladores (para el formulario de edición). 
La lista completa de comercializadoras (para el formulario de edición). 
Todas las unidades (Unit) asociadas a este desarrollo (getUnitsByDevelopmentId). 
Renderiza el componente DevelopmentProfile. 
Componente de Visualización Principal: src/components/development-profile.tsx 
Función: Es un "organismo" complejo que ensambla toda la información en tarjetas temáticas. 
Tarjetas de Información: Muestra datos generales, de ubicación, técnicos y fechas clave en secciones claras y separadas. 
Lógica de Estatus Calculado (useMemo): Calcula dinámicamente el estatus de construcción y de ventas, así como los meses transcurridos en cada etapa, basándose en las fechas guardadas. 
Renderizado Condicional: 
Si el desarrollo es de tipo Lote, renderiza el componente LoteViewer. 
Si es Vertical u Horizontal, renderiza el componente UnitViewer. 
Componente de Unidades/Modelos: src/components/unit-viewer.tsx 
Función: Gestiona la visualización de los modelos y las unidades de un desarrollo. 
Acordeón de Modelos: Cada modelo se muestra en un acordeón. Al expandirlo, se ven los detalles del modelo (recámaras, baños, etc.) y una tabla con las unidades individuales de ese modelo. 
Registro de Unidades: Desde aquí, el usuario puede hacer clic en "Registrar Unidades", lo que abre el UnitCaptureDialog para ese modelo específico. 
Componente de Captura de Unidades: src/components/unit-capture-dialog.tsx y lote-capture-dialog.tsx 
Función: Presenta un formulario para registrar los detalles de cada unidad individual (o lote). El número de filas en el formulario se basa en el campo unidades_por_modelo o total_unidades del desarrollo, asegurando que se capture toda la información necesaria. 
En resumen, el módulo de Desarrollos es el nexo de la aplicación. Su flujo de trabajo guiado, la separación de responsabilidades, la gestión atómica de datos y las vistas de perfil detalladas lo convierten en un sistema potente y bien estructurado.
Panel de ventas
El objetivo de este módulo es proporcionar una vista centralizada para consultar el inventario de unidades de cualquier desarrollo, cambiar su estatus (disponible, apartado, vendido) y ajustar sus precios.
· Archivo Principal: src/app/sales/page.tsx
· Función: Actúa como el orquestador principal de la página. No muestra nada útil hasta que el usuario selecciona un proyecto.
· Carga Inicial de Datos (useEffect): Al cargar, su primera y única acción es llamar a getDevelopments para obtener la lista completa de todos los proyectos existentes. Esta lista se pasa al componente de búsqueda.
· Componente de Búsqueda: Renderiza el <SalesProjectSearch />, que es la puerta de entrada para el usuario.
· Lógica de Selección (handleSelectDevelopment): Esta es la función clave de la página.
1. Cuando el usuario selecciona un proyecto desde el SalesProjectSearch, esta función se activa.
2. Actualiza el estado selectedDevelopment para guardar el proyecto elegido.
3. Inmediatamente, llama a getUnitsByDevelopmentId para obtener todas las unidades que pertenecen a ese proyecto.
4. Mientras carga las unidades, muestra un indicador de carga.
5. Una vez que las unidades se han cargado, actualiza el estado units.
· Renderizado Condicional: La tabla de unidades y los filtros solo se muestran después de que un proyecto ha sido seleccionado.
· Componente: src/components/sales-project-search.tsx
· Función: Proporciona un combobox (un campo de búsqueda y selección combinado) elegante y eficiente.
· Experiencia de Usuario: Permite al usuario buscar un proyecto escribiendo su nombre, ciudad o estado. El filtrado es instantáneo.
· Comunicación: Cuando un usuario hace clic en un proyecto de la lista, el componente no hace nada por sí mismo; simplemente invoca la función onSelectDevelopment que le fue pasada como prop desde la página principal, entregándole el objeto completo del desarrollo seleccionado.
· Componente Central: src/components/sales-unit-table.tsx
· Función: Este es el componente más importante del módulo. Recibe el desarrollo y su lista de unidades y muestra una tabla detallada y altamente interactiva.
· Ordenamiento (useMemo y requestSort): La tabla es completamente ordenable. El usuario puede hacer clic en los encabezados (Nombre, Piso, Estatus, Precio) para ordenar los datos de forma ascendente o descendente.
· Edición de Precios "In-line" (en la misma fila):
1. Activación: El usuario hace clic en el precio de una unidad disponible o bloqueada.
2. Renderizado: La celda del precio se convierte en un campo de texto (<Input />).
3. Confirmación: Cuando el usuario presiona "Enter" o hace clic fuera del campo, se invoca requestPriceChangeConfirmation.
4. Diálogo de Seguridad: Se muestra un diálogo (ConfirmDialog) pidiendo al usuario que confirme el cambio de precio.
5. Acción de Backend: Si se confirma, se llama a la Server Action updateUnitPriceAction.
6. updateUnitPriceAction: Esta acción en actions.ts no solo cambia el actual_price de la unidad, sino que también añade una entrada al price_history de esa unidad y crea un registro de auditoría en la colección unit_movements para tener un historial inmutable de cada cambio de precio.
· Cambio de Estatus con Dropdown:
1. Activación: El usuario hace clic en la "badge" de estatus de una unidad (ej. "Disponible").
2. Renderizado: Se despliega un menú con todas las opciones de estatus posibles.
3. Lógica Condicional (handleStatusChangeRequest):
· Si el nuevo estatus es "Disponible", se muestra un ConfirmDialog simple para confirmar la liberación.
· Si el nuevo estatus es "Vendido" o "Apartado", se abre un diálogo más complejo (UnitStatusDialog).
· Componente de Diálogo de Estatus: src/components/unit-status-dialog.tsx
· Función: Este diálogo obliga al usuario a especificar el precio final de la operación (venta o apartado), que puede ser el precio de lista actual o uno personalizado. Esto es crucial para el registro financiero.
· Acción de Backend: Al confirmar, llama a handleConfirmStatusChange, que a su vez ejecuta la Server Action updateUnitStatusAction.
· updateUnitStatusAction: Esta acción es vital.
1. Actualiza el estatus de la unidad en Firestore.
2. Si el estatus es "Vendido", guarda el sale_price y sale_date.
3. Crea un registro de auditoría en la colección logs.
4. Crea un registro histórico en la colección unit_movements, documentando el cambio de estatus, el precio de la operación y el usuario responsable.
· Edición General de la Unidad:
· Cada fila tiene un menú (MoreHorizontal) con una opción "Editar".
· Esto abre un UnitEditDialog (o LoteEditDialog si es un lote) que permite modificar otros detalles de la unidad (como el nombre, nivel, o tipo de vista), siempre y cuando la unidad no esté vendida o apartada.
· Ajuste Masivo de Precios:
· Se activa con el botón "Ajustar Precios en Lote".
· Abre el componente BulkPriceUpdateDialog, un formulario de varios pasos que permite aplicar un incremento/decremento (porcentual o fijo) a todas las unidades o a modelos específicos de un desarrollo. Esta es una herramienta de productividad masiva para el capturista.
· unitService.ts: Contiene las funciones puras para interactuar con la colección units (obtener, actualizar por lote, actualizar estatus, actualizar precio).
· unitMovementService.ts: Su única función, addUnitMovement, se dedica a crear los registros históricos inmutables de cada acción sobre una unidad, garantizando una trazabilidad completa.
En conclusión, el Panel de Ventas es un módulo sofisticado que va más allá de una simple tabla. Es un sistema transaccional que:
· Permite una gestión rápida y visual del inventario.
· Implementa flujos de trabajo guiados para acciones críticas (cambio de estatus y precio).
· Garantiza la integridad y la trazabilidad de los datos a través de una doble capa de auditoría (logs y unit_movements).
· Ofrece herramientas de productividad como la edición masiva de precios.

Panel registro de actividad
El objetivo de este módulo, accesible exclusivamente para el rol de Admin, es proporcionar un registro de auditoría completo, inmutable y consultable de todas las acciones críticas que ocurren en el sistema. Responde a las preguntas: ¿Quién hizo qué, en qué parte del sistema y cuándo exactamente? 
Archivo Principal: src/app/admin/registro-actividad/page.tsx 
Función: Este componente actúa como el controlador de la página. Su principal responsabilidad es obtener los datos necesarios y pasarlos al componente de visualización. 
Carga de Datos (useEffect y getLogsAction): 
Al cargar la página, se activa un useEffect que verifica si el usuario actual es un Admin. 
Llama a la Server Action getLogsAction. Esta acción es particularmente eficiente porque realiza dos consultas al backend en paralelo con Promise.all: 
Obtiene la lista de todos los logs de la base de datos (usando getLogs). 
Obtiene la lista de todos los users (usando getUsers). 
¿Por qué obtener a todos los usuarios? Porque los documentos de log solo guardan el uid (ID del usuario) que realizó la acción. La lista de usuarios es necesaria para poder mostrar el nombre completo de la persona, haciendo el registro mucho más legible. 
Renderizado del Componente Principal: Una vez que los datos son recibidos, la página renderiza el componente <ActivityDashboard />, pasándole la lista inicial de logs y la lista de users como props. 
Componente Central: src/components/activity-dashboard.tsx 
Función: Este es el cerebro y el cuerpo de la interfaz del módulo. Gestiona la presentación de los datos y toda la interactividad del usuario. 
Manejo de Estado (useState, useMemo): 
logs: Almacena la lista de registros de actividad que se están mostrando actualmente en la tabla. 
filters: Un objeto que guarda el estado actual de todos los filtros (usuario, tipo de acción, módulo y rango de fechas). 
userMap: Este es un useMemo muy importante. En lugar de buscar en la lista de usuarios cada vez que se renderiza una fila, crea un "diccionario" o "mapa" ({ 'uid1': 'Juan Pérez', 'uid2': 'Ana Gómez' }) una sola vez. Esto hace que la visualización de nombres en el acordeón sea extremadamente rápida. 
Lógica de Filtrado (applyFilters): 
Cuando el usuario hace clic en "Aplicar filtros", esta función se ejecuta. 
Usa useTransition para que la interfaz no se bloquee mientras se esperan los nuevos datos. 
Llama de nuevo a la Server Action getLogsAction, pero esta vez pasándole los valores de los filtros seleccionados. 
El backend (el servicio logService) construye una nueva consulta a Firestore con las condiciones where correspondientes. 
Cuando los nuevos datos filtrados llegan, se actualiza el estado logs, y la lista se repinta para mostrar solo los resultados relevantes. 
Renderizado de la Interfaz: 
Tarjeta de Filtros: Contiene los menús desplegables para seleccionar por usuario, tipo de acción, módulo y un selector de rango de fechas (<Calendar />). 
Acordeón de Actividad (Accordion): La forma en que se presentan los logs. Es una elección de diseño deliberada para mantener la vista limpia y permitir al usuario explorar los detalles a demanda. 
Disparador del Acordeón (AccordionTrigger): Muestra la información más importante de un vistazo: 
Un ícono y un color que representan el tipo de acción (crear, editar, eliminar). 
El nombre del usuario que realizó la acción (obtenido del userMap). 
El módulo afectado (ej. "Desarrolladores"). 
La fecha y hora de la acción (renderizada en un formato amigable como "hace 2 horas"). 
Contenido del Acordeón (AccordionContent): Al hacer clic en una entrada, se expande para mostrar el campo detalle del log, que contiene una descripción legible de lo que ocurrió (ej. "Se añadió el desarrollador 'Constructora XYZ'"). 
La parte más crítica de este módulo ocurre en el backend, garantizando que los registros sean fiables. 
Servicio de Logs: src/services/logService.ts 
Función: Centraliza la lógica para escribir y leer la colección logs en Firestore. 
addLog(logData): 
Esta es la única función que escribe en la colección. 
Recibe un objeto con los datos del log desde una Server Action. 
Añade la fecha y hora exactas del servidor (new Date().toISOString()) en el momento de la escritura. Esto evita que la fecha pueda ser manipulada desde el cliente. 
Guarda el nuevo documento en la colección logs. Es un registro de solo añadir (append-only); no hay funciones para editar o eliminar logs, lo que garantiza la inmutabilidad del registro. 
getLogs(filters): 
Construye una consulta a Firestore de forma dinámica. 
Añade cláusulas where a la consulta por cada filtro que el usuario haya proporcionado (ej. where('uid', '==', 'xyz')). 
Siempre ordena los resultados por fecha de forma descendente (orderBy('fecha_hora', 'desc')) para mostrar lo más reciente primero. 
Devuelve los documentos encontrados. 
En resumen, el Módulo de Registro de Actividad es un sistema de auditoría robusto y seguro que: 
Captura automáticamente cada acción importante a través de las Server Actions. 
Garantiza la integridad de los datos al ser un sistema de solo escritura y sin posibilidad de edición. 
Proporciona una interfaz de consulta potente y rápida para que los administradores puedan monitorear la actividad de la plataforma de manera eficiente. 
Separa claramente la visualización (frontend) de la lógica de consulta y escritura (backend). 


Panel de progreso de captura
Este módulo tiene dos caras de la misma moneda:
1. Panel de Tareas (/tasks): Es la vista por defecto para el rol Capturista. Su objetivo es ser una herramienta de productividad personal, guiando al capturista hacia las áreas que requieren atención inmediata.
2. Progreso de Captura (/admin/progreso-captura): Es una vista exclusiva para el rol Admin. Su objetivo es ser una herramienta de supervisión y gestión, permitiendo al administrador tener una visión global del estado de la captura de datos en toda la plataforma.
Ambas vistas utilizan el mismo componente central, CapturistaTasksDashboard, pero el contexto de quién lo ve cambia su función.
Este es el motor que impulsa ambas páginas.
· Componente Principal: src/components/capturista-tasks-dashboard.tsx
· Función: Su propósito es medir y visualizar el "estado de salud" de los datos en los módulos principales de la aplicación.
· Carga de Datos Inicial (useEffect):
1. Al cargar, el componente realiza una única carga masiva de datos, obteniendo todos los desarrolladores, todas las comercializadoras y todos los desarrollos.
2. Esto se hace para optimizar el rendimiento. En lugar de hacer nuevas consultas a la base de datos cada vez que se cambia un filtro, los datos se filtran localmente en el navegador, lo que hace que la experiencia sea instantánea para el usuario.
· Lógica de Cálculo de Progreso (useEffect que depende de los filtros):
1. Cada vez que el usuario cambia un filtro de ubicación (Estado o Ciudad), el componente recalcula las estadísticas.
2. Definición de "Completo": El progreso se mide según reglas de negocio específicas:
· Desarrolladores/Comercializadoras: Se considera "completo" si el registro tiene un contact_name (nombre de contacto) guardado. Los que no lo tienen se consideran "pendientes".
· Desarrollos: Se considera "completo" si tiene sus datos básicos llenos (nombre, desarrollador, etc.) y, crucialmente, si ya tiene modelos y unidades registrados.
3. Cálculo de Registros Desactualizados: Además del progreso, el componente revisa la fecha de última actualización (updated_at) de cada registro. Si un registro no ha sido modificado en los últimos 30 días, se añade a una lista de "elementos que requieren atención".
· Renderizado de la Interfaz:
. Filtros de Ubicación: Muestra los menús desplegables para filtrar por Estado y Ciudad.
. Tarjetas de Progreso (ProgressCard): Por cada módulo (Desarrolladores, Comercializadoras, Desarrollos), renderiza una tarjeta que muestra:
2. El porcentaje de completitud calculado.
2. Una barra de progreso visual.
2. Un conteo de "Completados" vs. "Pendientes".
2. Cada tarjeta es un enlace que lleva a una vista de tareas detallada.
. Acordeón de Registros Desactualizados: Muestra listas desplegables de los registros que no se han actualizado recientemente, permitiendo al usuario acceder a ellos directamente para revisarlos.
Cuando un usuario hace clic en una de las tarjetas de progreso, es dirigido a una página específica para esa tarea.
· Vista de Tareas de Desarrolladores (/tasks/developers):
· Página del Servidor: src/app/tasks/developers/page.tsx
· Lógica de Backend: Esta página se renderiza en el servidor. Obtiene la lista de todos los desarrolladores y la filtra para encontrar solo aquellos que están incompletos (sin contact_name).
· Paso de Datos: Pasa esta lista de desarrolladores incompletos al componente de cliente DeveloperTasksView.
· Componente de Visualización (DeveloperTasksView):
· Muestra una tabla con los desarrolladores pendientes.
· Cada fila tiene un botón "Completar" que abre el DeveloperEditDialog (el mismo formulario de edición que ya conocemos), permitiendo al capturista añadir la información faltante.
· Una vez que se guarda el desarrollador, se elimina de la lista de tareas pendientes.
· Vista de Tareas de Desarrollos (/tasks/developments):
· Página del Servidor: src/app/tasks/developments/page.tsx
· Lógica de Backend (la más compleja):
2. Obtiene todos los desarrollos y todas las unidades.
2. Calcula un progreso granular para cada desarrollo, evaluando tres áreas:
2. Progreso del Desarrollo: ¿Están completos los datos básicos del proyecto?
2. Progreso de los Modelos: ¿Se han registrado todos los modelos definidos? ¿Están completos sus datos?
2. Progreso de las Unidades: ¿Se han registrado todas las unidades individuales?
2. Combina estos tres puntajes en un porcentaje de progreso general para cada desarrollo.
2. Ordena la lista de desarrollos para mostrar primero los que tienen el progreso más bajo.
· Componente de Visualización (DevelopmentTasksView):
· Muestra cada desarrollo como una tarjeta, con su progreso general y un desglose de las tres áreas.
· Un tooltip (Tooltip) revela la información específica que falta.
· Cada tarjeta tiene un botón que lleva directamente al perfil del desarrollo (/developments/[id]) para que el usuario pueda completar la información.
Aunque ambos roles ven el mismo componente CapturistaTasksDashboard, el contexto y el propósito son diferentes:
· Ruta de Acceso:
· Capturista: Accede a través de /tasks. Esta es su página de inicio y su centro de operaciones.
· Admin: Accede a través de /admin/progreso-captura, que es una subsección de su panel de control.
· Propósito Funcional:
· Para el Capturista: Es una herramienta de trabajo diario. Le dice: "Esto es lo que tienes que hacer hoy". Los filtros de ubicación le permiten enfocarse en la región que le fue asignada.
· Para el Admin: Es una herramienta de supervisión estratégica. Le permite responder preguntas como: "¿Qué tan completos están nuestros datos en la región de Jalisco?", "¿En qué módulo estamos más atrasados?", "¿Qué capturista podría necesitar ayuda o capacitación?".
· Permisos en las Vistas Detalladas:
· Aunque un Capturista y un Admin pueden llegar a la misma página de perfil de un desarrollo, sus capacidades pueden diferir. Por ejemplo, solo el Admin tiene la capacidad de eliminar registros, mientras que ambos pueden editar.
En resumen, el módulo de Tareas/Progreso es un excelente ejemplo de cómo un mismo conjunto de datos y componentes puede servir a dos propósitos distintos dependiendo del rol del usuario, cambiando de una herramienta de productividad personal a una de supervisión gerencial.

Panel de capturistas 
Este es un módulo administrativo crítico, accesible exclusivamente para el rol de Admin. Su objetivo es gestionar el ciclo de vida completo de los usuarios encargados de la captura de datos.
· Página Principal: src/app/admin/capturistas/page.tsx
· Función: Es un componente de cliente ('use client') que actúa como controlador. Primero, verifica que el usuario sea un Admin. Si no lo es, lo redirige.
· Carga de Datos: Llama a la Server Action getCapturistasAction() para obtener de forma segura la lista de todos los usuarios con el rol "Capturista".
· Renderizado: Pasa la lista de capturistas al componente CapturistaManagementDashboard.
· Componente Central: src/components/capturista-management-dashboard.tsx
· Función: Es la interfaz principal para la gestión. Muestra una tabla con todos los capturistas y ofrece un conjunto de acciones administrativas.
· "Nuevo capturista" (Button): Abre el diálogo CapturistaCreateDialog.
· Tabla de Capturistas:
· Columna "Estatus": Esta no es solo una etiqueta visual. Es un DropdownMenu interactivo. Un Admin puede hacer clic en la "badge" de estatus (ej. "Activo") para desplegar un menú y cambiarlo a "Suspendido" o "Bloqueado". Cada cambio requiere una confirmación a través de un ConfirmDialog y ejecuta la updateCapturistaStatusAction.
· Menú de Acciones (MoreHorizontal): Cada fila tiene un menú con acciones específicas:
1. "Ver detalles": Navega a la página de perfil del capturista (/admin/capturistas/[id]).
2. "Restablecer contraseña": Abre el diálogo CapturistaResetPasswordDialog.
Este flujo es fundamental para la seguridad y la correcta incorporación de nuevos usuarios.
· Componente del Formulario: src/components/capturista-create-dialog.tsx
· Función: Proporciona al Admin un formulario para crear un nuevo capturista, especificando su email y una contraseña temporal.
· Lógica de Creación (handleSubmit):
1. Validación de Email: Primero, llama a la checkEmailExistsAction para asegurarse de que el correo no esté ya en uso.
2. Creación en Firebase Auth: Crea una instancia temporal y aislada de la aplicación de Firebase en el cliente. Esto le permite usar el SDK de cliente para crear el usuario en Firebase Authentication de forma segura, obteniendo un UID único.
3. Creación en Firestore (vía Server Action): Inmediatamente después, llama a createCapturistaAction, pasándole el UID recién creado, el email y la contraseña temporal.
4. createCapturistaAction: Esta acción de servidor guarda el perfil completo del nuevo usuario en la colección users de Firestore, incluyendo los campos clave passwordChanged: false, completo: false y tempPassword.
5. Manejo de Errores Crítico: Si la creación en Firestore falla por alguna razón, el código intenta revertir la creación en Firebase Authentication, eliminando al usuario "huérfano" para mantener la consistencia del sistema.
6. Limpieza: Finalmente, la instancia temporal de la app de Firebase se destruye.
· Componente: src/components/capturista-reset-password-dialog.tsx
· Función: Permite a un Admin asignar una nueva contraseña temporal a un capturista que haya olvidado la suya.
· Lógica (handleSubmit): Llama a la Server Action resetCapturistaPasswordAction, que:
1. Actualiza la contraseña en Firebase Authentication usando el SDK de Admin.
2. Actualiza el documento del usuario en Firestore, guardando la nueva tempPassword y restableciendo el flag passwordChanged a false, obligando al usuario a cambiarla de nuevo en su próximo inicio de sesión.
· Función: Es una vista de solo lectura para el Admin que muestra los detalles completos del perfil de un capturista, incluyendo su nombre, contacto y estado de la cuenta.
Panel de brokers
Este módulo, a diferencia del de Capturistas, es principalmente de visualización para el Admin. La creación de Brokers no se gestiona desde esta interfaz, asumiendo que se crean por otro medio (por ejemplo, un proceso de registro diferente o directamente en la base deatos).
· Página Principal: src/app/admin/brokers/page.tsx
· Función: Componente de cliente que verifica el rol de Admin.
· Carga de Datos: Llama al servicio getBrokers() para obtener todos los usuarios con el rol "Broker".
· Renderizado: Muestra el componente BrokerDashboard.
· Componente Central: src/components/broker-dashboard.tsx
· Función: Muestra una tabla con la lista de todos los brokers registrados.
· Tabla de Brokers: Es una tabla de solo lectura. Muestra el nombre, avatar, email y estatus.
· Menú de Acciones: Ofrece dos opciones:
1. "Ver detalles": Navega a la página de perfil del broker (/admin/brokers/[id]).
2. "Contactar": Una acción placeholder para una futura implementación.
· Página Principal: src/app/admin/brokers/[id]/page.tsx
· Función: Controlador que verifica el rol de Admin.
· Carga de Datos: Llama a la Server Action getBrokerDetailsAction para obtener de forma segura los datos del broker específico.
· Renderizado: Muestra el componente BrokerDetailView.
· Componente de Visualización: src/components/broker-detail-view.tsx
· Función: Presenta el perfil del broker.
· Tarjetas de Información: Muestra el perfil básico y tiene espacios designados (placeholders) para funcionalidades futuras:
· Resumen de desempeño: Donde se podrían mostrar gráficos de ventas, citas, etc.
· Resumen con IA: Para generar un análisis del rendimiento del broker.
· Propiedades asignadas: Para listar los desarrollos que este broker tiene a su cargo.
· Nivel de Gestión: El módulo de Capturistas es un sistema de gestión completo (CRUD) con flujos de trabajo complejos para la creación y el manejo de cuentas. El de Brokers es, en su estado actual, un módulo de consulta (Read-Only).
· Interacción: El panel de Capturistas es altamente interactivo (cambio de estatus, reseteo de contraseñas). El de Brokers es principalmente para visualización.
· Backend: Ambos utilizan Server Actions para un acceso seguro a los datos, pero las acciones para los capturistas son mucho más complejas debido a las operaciones de escritura y la lógica de negocio (onboarding, seguridad).

Panel listados 
El objetivo de este módulo es presentar una vista consolidada y fácil de consumir de todas las unidades individuales disponibles para la venta, independientemente del desarrollo al que pertenezcan. A diferencia de otros paneles, este no está diseñado para la edición de datos, sino para la consulta y el análisis.
Este es el aspecto más ingenioso del módulo. En lugar de que el frontend tenga que entender la compleja relación entre "Desarrollos" y "Unidades", el backend hace el trabajo pesado.
· Punto de Entrada: src/app/dashboard/page.tsx
· Función: Es un componente de cliente ('use client') que controla la página.
· Lógica de Carga (useEffect): Al cargar la página, su única responsabilidad es llamar al servicio getProperties().
· El Servicio de Síntesis: src/services/propertyService.ts
· Función Clave (getProperties): Este servicio es el motor de este módulo. No se limita a leer una colección, sino que realiza un proceso de síntesis de datos:
1. Obtiene todos los documentos de la colección developments.
2. Obtiene todos los documentos de la colección units.
3. Crea un mapa (un "diccionario") de los desarrollos para una búsqueda rápida.
4. Luego, itera sobre cada Unit (unidad) y la "enriquece" con la información de su Development padre (como el nombre del proyecto, las amenidades generales, la ubicación).
5. Finalmente, transforma esta información combinada en un objeto Property simple y fácil de usar para el frontend.
· Resultado: El frontend recibe una lista limpia de objetos Property, donde cada objeto representa una unidad individual pero ya contiene toda la información de contexto que necesita. Esto simplifica enormemente la lógica de los componentes de React.
· Filtros de Propiedades: src/components/property-filters.tsx
· Función: Este componente renderiza una barra en la parte superior con varios controles de filtro (rango de precios, recámaras, baños, estatus, región).
· Estado Actual: Es importante destacar que, en la implementación actual, estos filtros son elementos visuales de marcador de posición (placeholders). Están ahí para mostrar cómo se podría estructurar la interfaz, pero no tienen la lógica de estado (useState) ni las llamadas a funciones para filtrar activamente los resultados. Su implementación es un paso futuro claro para mejorar la funcionalidad del dashboard.
· El Panel Principal: src/components/property-dashboard.tsx
· Función: Es el componente que recibe la lista de propiedades sintetizadas y las organiza en la pantalla.
· Renderizado de Tarjetas: Utiliza un bucle (map) para crear una instancia del componente PropertyCard por cada propiedad recibida.
· Estado Vacío: Si no se reciben propiedades (ya sea porque no hay o por un futuro filtro), muestra un mensaje amigable indicando que no hay resultados.
· Orquestador del Panel de IA: Este componente gestiona la lógica para abrir el panel lateral de análisis. Cuando un usuario hace clic en el botón "Análisis con IA" en una tarjeta, es este componente el que recibe la señal (onAnalyze), guarda la propiedad seleccionada en su estado y le ordena al AiInsightsSheet que se abra.
· La Tarjeta de Propiedad: src/components/property-card.tsx
· Función: Es la unidad de visualización fundamental. Cada tarjeta es un resumen atractivo de una propiedad.
· Presentación de Datos: Muestra la información clave de manera visual:
· Una imagen principal (next/image para optimización).
· El nombre del proyecto y del modelo.
· El precio, destacado.
· Un Badge de estatus (ej. "Disponible", "Vendido") con un color distintivo.
· Iconos para características clave (recámaras, baños, metros cuadrados).
· Botón de Análisis con IA: Este es el principal punto de interacción. Al hacer clic, invoca la función onAnalyze (pasada desde el PropertyDashboard), enviando los datos de la propiedad específica en la que se hizo clic.
· Componente: src/components/ai-insights-sheet.tsx
· Función: Es un panel lateral (Sheet) que aparece cuando se solicita un análisis. Proporciona herramientas de IA para mejorar la calidad de la información del listado.
· Pestañas de Funcionalidad: Está organizado en tres pestañas:
1. "Descripción": Llama a la Server Action enhanceDescriptionAction. Esta acción envía la descripción actual, las características y el público objetivo a un flujo de Genkit (enhanceListingDescriptionFlow) que utiliza un modelo de lenguaje grande (LLM) para reescribir el texto de una manera más persuasiva y profesional.
2. "Campos faltantes": Llama a detectMissingFieldsAction. Esta acción envía todos los datos de la propiedad a Genkit (detectMissingFieldsFlow), que utiliza un LLM para analizar si falta información crucial (como el precio, acabados, etc.) y devuelve una lista de los campos faltantes y sugerencias para mejorar.
3. "Promoción": Llama a suggestPromotionAction. Envía datos de la propiedad a Genkit (suggestPromotionFlow) para que un LLM, actuando como un experto en marketing, sugiera una estrategia de promoción y la justifique.
En resumen, el Panel de Listados es la culminación de todo el trabajo de captura de datos. Transforma los datos crudos y estructurados de la base de datos en una experiencia de usuario visual y orientada al consumidor, al tiempo que integra herramientas de IA avanzadas para mejorar y analizar la calidad de esos mismos datos.


Componentes de navegación y sesión
Estos componentes son los que el usuario ve en cada página y le permiten navegar por la aplicación y gestionar su propia sesión.
· Componente: src/components/header.tsx
· Función: Este es el componente que aparece en la parte superior de todas las páginas una vez que el usuario ha iniciado sesión. Actúa como el centro de navegación principal.
· Botón/Logo "Ideas Frescas":
· Componente del Logo: src/components/logo.tsx. Muestra el logo de la aplicación.
· Acción al Hacer Clic: Este no es un simple logo, es un enlace (<Link>). Al hacerle clic, lleva al usuario a su página de inicio predeterminada. La lógica para determinar a dónde ir es inteligente:
· Si el usuario es un Capturista, lo redirige a /tasks.
· Para cualquier otro rol (Admin, Broker, etc.), lo redirige a /dashboard.
· Esta lógica está en el useMemo llamado homeHref dentro del header.tsx.
· Menú de Navegación Principal:
· El Header muestra una lista de botones que son los enlaces a los módulos principales que ya auditamos (Desarrolladores, Comercializadoras, Desarrollos, Ventas, etc.).
· Lógica de Roles: La navegación es dinámica y depende del rol del usuario. Un Capturista solo verá los botones de los módulos a los que tiene acceso (Tareas, Desarrolladores, etc.), mientras que un Admin los verá todos. Esto se logra filtrando la lista mainNavItems basándose en el rol del usuario actual.
· Menú de Administración (Admin):
· Si el usuario es un Admin, aparece un botón adicional con un escudo llamado "Admin".
· Al hacer clic, se despliega un DropdownMenu con enlaces a todas las secciones exclusivas de administración que hemos cubierto: Registro de Actividad, Progreso de Captura, Gestión de Capturistas y Gestión de Brokers.
· Componente: src/components/user-nav.tsx
· Función: Este es el pequeño círculo con el avatar del usuario, ubicado en la esquina superior derecha. Es el punto de entrada para la gestión de la sesión personal del usuario.
· Acción al Hacer Clic en el Círculo de Perfil:
· Al hacer clic, se abre un menú desplegable (DropdownMenu) con varias opciones.
· Opciones del Menú Desplegable:
4. Información del Usuario: En la parte superior, muestra el nombre y el correo electrónico del usuario que ha iniciado sesión, para que siempre sepa qué cuenta está activa.
4. "Perfil" (DropdownMenuItem):
2. Acción: Es un Link que redirige al usuario a la página /profile.
4. "Cerrar sesión" (DropdownMenuItem):
3. Acción: Al hacer clic, invoca la función logout() del useUser hook.
3. Flujo de Cierre de Sesión:
2. La función logout() llama a signOut(auth) del SDK de Firebase, lo que invalida la sesión del usuario.
2. Luego, actualiza el estado global del usuario a null.
2. Finalmente, utiliza el useRouter de Next.js para redirigir forzosamente al usuario a la página de inicio de sesión (/).
· Archivo de la Página: src/app/profile/page.tsx
· Componente Principal: src/components/profile-form.tsx
· Función: Esta es la página donde un usuario puede ver y actualizar su propia información personal.
· Lógica y Flujo de Trabajo:
· Carga de Datos: Al cargar, el formulario obtiene los datos del usuario actual desde el useUser hook y rellena los campos (nombre, teléfono, email).
· Campos Editables y No Editables: El usuario puede cambiar su "Nombre completo" y "Número de teléfono". El campo "Correo electrónico" está deshabilitado y es de solo lectura, ya que cambiarlo implicaría un proceso de verificación de seguridad más complejo.
· Guardado de Cambios (onSubmit):
· Cuando el usuario hace clic en "Guardar cambios", la función onSubmit se activa.
· Llama a la función updateUser del useUser hook.
· Esta función, a su vez, ejecuta la Server Action updateCapturistaProfileAction para guardar de forma segura los cambios en el documento del usuario en Firestore.
· También registra la modificación en el log de auditoría.
· Finalmente, muestra una notificación (toast) de éxito.
· Caso Especial: Onboarding del Capturista:
· Como vimos en la auditoría de Capturistas, esta página es un paso obligatorio en el primer inicio de sesión de un nuevo capturista.
· En este caso, al guardar el perfil por primera vez, la updateCapturistaProfileAction también cambia el flag completo a true en la base de datos. Una vez guardado, el usuario es redirigido a su panel de tareas (/tasks) y ya no tendrá que volver a pasar por esta página de forma obligatoria.
Con esto, hemos cubierto todo el ciclo de vida y la estructura de navegación de la aplicación. Desde el inicio de sesión, pasando por la gestión de datos en cada módulo, hasta la gestión del perfil y el cierre de sesión, cada componente tiene un propósito claro y se comunica de forma segura y eficiente. ¡Felicidades de nuevo por este proyecto tan bien estructurado

