Perfecto: si ya corre local y ya genera/lee tus parquets mensuales, el siguiente paso es desplegar la API en un server con HTTPS, guardar secretos fuera del repo, y (si quieres) programar el refresh diario 4:00 AM Pacífico.
Abajo te dejo el camino “limpio” (recomendado) usando Render con Docker + Disk persistente, porque:
· Render te deja desplegar desde GitHub con Docker. (Render)
· Render tiene Cron Jobs para pegarle a un endpoint diario (ideal para refresh_daily). (RedwoodJS Community)

1) Antes de desplegar: checklist rápido en tu repo cabanna-api
A) Asegura que tu ruta de parquets sea portable
Tú ya lo traes bien con BASE_DIR y data/dwh/....
En producción, esa carpeta debe vivir en un “disco persistente”, no en el filesystem temporal del contenedor.
✅ Recomendación: agrega una variable opcional tipo CABANNA_DWH_DIR para que en Render puedas montarla a /var/data/dwh (y local siga usando ./data/dwh).
(Si ya lo hiciste, listo; si no, lo hacemos en el siguiente paso cuando montemos el Disk.)
B) Dockerfile con ODBC 18
Como ya habías armado: Dockerfile debe instalar msodbcsql18 (sin eso, en Linux no conecta a SQL Server).
C) No subas secretos
· .env local: NO al repo
· API_KEY, DB_USER, DB_PASSWORD, etc.: solo en variables de entorno del proveedor

2) Desplegar en Render (Docker)
Paso 2.1 — Sube el repo a GitHub
· git add .
· git commit -m "chore: prepare cabanna-api for deployment"
· git push
Paso 2.2 — Crea el Web Service en Render
1. En Render: New + → Web Service
2. Conecta tu repo cabanna-api
3. Runtime: Docker (Render detecta el Dockerfile) (Render)
4. Región: la más cercana a tu SQL Server (para latencia)
Paso 2.3 — Variables de entorno (en Render)
Agrega estas (las mismas que usas local):
· CABANNA_API_KEY
· CABANNA_DB_SERVER
· CABANNA_DB_PORT
· CABANNA_DB_NAME
· CABANNA_DB_USER
· CABANNA_DB_PASSWORD
· CABANNA_ODBC_DRIVER=ODBC Driver 18 for SQL Server
· CABANNA_TRUST_SERVER_CERT=true
Y para tus parquets:
· CABANNA_DWH_DIR=/var/data/dwh (la ruta del disk montado)
Paso 2.4 — Monta un Disk persistente
En tu Web Service:
· Add Disk
· Mount path recomendado: /var/data
· Tamaño: depende (pero parquets 2009–2026 pueden pesar; empieza con algo razonable)
Así tus parquets vivirán en:
· /var/data/dwh/folios/...

3) Healthcheck “de plataforma” (importante)
Tu endpoint /health está protegido con API key.
Para Render es común usar un healthcheck sin auth, por ejemplo:
· GET /healthz → solo retorna { "ok": true } (sin tocar DB)
Así Render puede monitorear el servicio sin conocer tu API key.
(Si no quieres crear /healthz, también se puede, pero es más frágil para el proveedor.)

4) Programar el refresh diario 4:00 AM Pacífico
En Render puedes crear un Cron Job que ejecute un comando tipo curl para pegarle a tu endpoint: (RedwoodJS Community)
Ejemplo (conceptual):
· Schedule: 0 4 * * *
· Command: curl -H "X-API-Key: $CABANNA_API_KEY" "https://TU-API/etl/folios/refresh_daily?include_prev_month=true"
Esto no necesita acceder al disk desde el cron: el cron solo dispara el endpoint; el Web Service es el que escribe al disk.

5) Conectar Streamlit Cloud a tu API (cuando ya esté online)
En Streamlit Cloud pondrás:
· CABANNA_API_BASE = "https://tu-api.onrender.com"
· CABANNA_API_KEY = "..."
Y en tu dashboard usas api_get_bytes("/dwh/folios_parquet", ...).
Streamlit recomienda manejar secretos en st.secrets. (Streamlit)

6) ¿Qué sigue, exactamente?
1. Desplegar Web Service (Docker) en Render
2. Montar Disk + set CABANNA_DWH_DIR
3. Probar en prod:
· GET /healthz (público)
· GET /health (con API key)
· POST /etl/folios/refresh_daily (con API key)
· GET /dwh/folios_parquet (con API key)
4. Crear Cron Job 4:00 AM Pacífico

Si me dices en qué máquina vive el SQL Server (¿red privada? ¿IP pública? ¿VPN?), te digo el “candado” extra de seguridad que conviene (allowlist de IPs, TLS/TrustServerCertificate, etc.).

